> 数学 >
设函数f(x)=x^3+2ax^2+bx+a,g(x)=x^2-3x+2,其中x∈R,a、b为常数.已知曲线y=f(x)与y=g(x)在点(2,0)
求a,b的值,并写出切线L的方程;
若方程f(x)+g(x)=mx有三个互不相同的实数根0,x1,x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围
人气:213 ℃ 时间:2019-08-21 06:38:03
解答
题目没说得很清楚,切线L是指f(x)与g(x)在点(2,0)处的共同切线吧.这样才可(1)对两函数进行求导:f'(x)=3x^2+4ax+b,g(x)=2x-3,它们在点(2,0)处有共同切线L,所以:f'(2)=12+8a+b=g'(2)=1.另外,把点(2,0)代入f(x)...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版