a |
sinA |
b |
sinB |
c |
sinC |
则
2c−a |
b |
2ksinC−ksinA |
ksinB |
2sinC−sinA |
sinB |
cosA−2cosC |
cosB |
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即
sinC |
sinA |
(Ⅱ)由余弦定理可知cosB=
a2+c2−b2 |
2ac |
1 |
4 |
由(Ⅰ)可知
sinC |
sinA |
c |
a |
①②联立求得c=2,a=1
sinB=
1−
|
| ||
4 |
∴S=
1 |
2 |
| ||
4 |
cosA−2cosC |
cosB |
2c−a |
b |
sinC |
sinA |
1 |
4 |
a |
sinA |
b |
sinB |
c |
sinC |
2c−a |
b |
2ksinC−ksinA |
ksinB |
2sinC−sinA |
sinB |
cosA−2cosC |
cosB |
sinC |
sinA |
a2+c2−b2 |
2ac |
1 |
4 |
sinC |
sinA |
c |
a |
1−
|
| ||
4 |
1 |
2 |
| ||
4 |