平面直角坐标系中,点A为(0,2),点B为(6,6)点P是x轴上的一动点,当PA+PB的值最小时,求点P的坐标
人气:143 ℃ 时间:2020-01-31 19:45:27
解答
P=(3.0)
设P为(X.0)
pa+pb=(2^2+X^2)+((6-x)^2+6^2)
设PA+PB为Y
y=4+X^2+36-12X+X^2+36=2X^2-12X+76
即Y=2X^2-12X+76=2(X-3)^2+58
当X=3时,Y值最小,即X=3
即P为(3.0);
推荐
- 如图,平面直角坐标系中,点A为(0,2),点B为(6,6)点P是x轴上一动点,当PA+PB得值最小时,求
- 如图,平面直角坐标系中,点A为(0,2),点B为(6,6),点P是x轴上一动点,当PA+PB的值最小时,求:
- 如图所示的平面直角坐标系中,点A的坐标是(-4,4)、点B的坐标是(2,5),在x轴上有一动点P,要使PA+PB的距离最短,则点P的坐标是_.
- 平面直角坐标系中,点A(-2,1)B(6,5),(1)在x轴上求一点P,使得PA+PB最小; (2)求PA+PB的最小值
- 已知在平面直角坐标系中,点A(3,2),点B(2,-1),点p在x轴上运动,为使|pa-pb|最大,求点p的坐标
- 一道关于压强的物理题
- 什么是化石阅读答案
- x-y=2 x²-y²=10 求 x+y
猜你喜欢