n=2时,p(x1=1)=1/2,∴p(x1=奇数)=1/2,即p(x2=1)=1/2
=>p(x2=0)=1-p(x2=1)=1/2,∴n=2时结论成立
假设对n结论成立,下面考虑n+1的情况
即p(x1+x2+...+x(n-1)=奇数)=1/2,p(xn=1)=p(xn=0)=1/2,则
p(x1+x2+...+x(n-1)+xn=奇数)=p(x1+x2+...+x(n-1)=奇数)·p(xn=偶数)
+[1-p(x1+x2+...+x(n-1)=奇数)]·[1-p(xn=偶数)]
=1/2·p(xn=0)+1/2·p(xn=1)=1/4+1/4=1/2
∴p(x(n+1)=1)=p(x1+x2+...+x(n-1)+xn=奇数)=1/2
p(x(n+1)=0)=1-p(x(n+1)=1)=1/2,∴结论对n+1也成立
∴结论对任意n≥2均成立