曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周
∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周y=根号下(4x-x^2),计算曲线积分.
人气:113 ℃ 时间:2020-04-15 07:10:56
解答
P=y+xe^2y,Q=x^2*e^2y+1
aP/ay=1+2xe^2y
aQ/ax=2xe^2y
作辅助线AO:y=0,x:4->0
原式=∫L+AO-∫AO
=∫∫1dxdy-∫(4,0)xdx
=1/2π×2²+x²/2|(0,4)
=2π+8
推荐
- 计算∫L(1+xe^2y)dx+(x^2e^2y-y^2)dy,其中L是从点O(0,0)经圆周(x-2)^2+y^2=4上半部到点A(4,0)
- ∫(y^2+xe^(2y))dx+(x^2e^(2y)+1)dy,C是沿第一象限的半圆弧(x-2)^2+y^2=4,由点O(0,0)到点A(4,0)的一段弧
- 计算曲线积分I=∫(X^2-y)dx-(x+cos^2y)dy,其中是L在上半圆周y=√((x-x^2)由点(0,0)到(1,0)的一段弧.
- ∫L(e^x siny-2y)dx+(e^x cosy-z)dy, L:上半圆周(x-a)^2+y^2=a^2 , y>=0,沿逆时针方向.
- 计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧
- 作文有哪些类型
- 用feel这一个英文句子
- CE是RT三角形ABC的斜边AB上的高,BG垂直AP, 求证CE^2=ED乘EP
猜你喜欢