计算∫L(1+xe^2y)dx+(x^2e^2y-y^2)dy,其中L是从点O(0,0)经圆周(x-2)^2+y^2=4上半部到点A(4,0)
的弧段
人气:392 ℃ 时间:2020-03-19 10:55:59
解答
因为(1+xe^2y)对y求偏导数得:2xe^2y;
(x^2e^2y-y^2) 对x求偏导数得:2xe^2y,故积分与路径无关.
选取路径:y=0,0《x《4,代入得:
∫L(1+xe^2y)dx+(x^2e^2y-y^2)dy=∫L(1+x)dx,L:[0,4]
=x+x^2/2=12
推荐
- ∫(y^2+xe^(2y))dx+(x^2e^(2y)+1)dy,C是沿第一象限的半圆弧(x-2)^2+y^2=4,由点O(0,0)到点A(4,0)的一段弧
- (x^2-y)dx-(x+sin^2y)dy,L为圆周y=√(2x-x^2)上由点(0,0)到(1,1)的一段孤
- 曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周
- 计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,
- ∫C (yx^3+e^y)dx+(xy^3+xe^y-2y)dy,其中C为正向圆周x^2+y^2=a^2
- Unit11
- 关于体液免疫,B细胞分化为浆细胞的过程
- There is a bank _______(在……对面) the street
猜你喜欢