设f(x)在x=e处有连续的一阶导数,f'(e)=-2(e^-1)则lim(x→0+)(d/dx)f(e^cos√x)=
人气:213 ℃ 时间:2020-02-04 08:48:43
解答
(d/dx)f(e^cos√x)
=f‘(e^cos√x)*e^cos√x*sin√x*(1/2√x)
所以:lim(x→0+)(d/dx)f(e^cos√x)
=lim(x→0+)f‘(e^cos√x)*e^cos√x*(-sin√x)*(1/2√x)
=-f‘(e)e/2
=e(e^(-1))
=1
推荐
- 设f'(x)在[a,b]上连续,证明:lim(λ→+∞)∫(a,b)f(x)cos(λx)dx=0
- 设f(x)有二阶连续导数且f'(x)=0,lim(x趋向于0)f''(x)/|x|=1则
- 设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
- 设f(x)在x=1有连续一阶导数,f'(1)=2,求lim x->1+时的d[f(cos√(x-1))]/dx,答案为什么不是2
- 设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3
- When the boy sleeps,he would like to keep the Windows closed的同义句急啊
- NH4NO3溶液的溶质质量分数为50%,则该溶液中溶质、溶剂、溶液三者的质量比为?
- -1+六分之五-十二分之七+二十分之九-三十分之十一+四十二分之十三-五十六分之十五+七十二分之十七
猜你喜欢