设f(x)在x=1有连续一阶导数,f'(1)=2,求lim x->1+时的d[f(cos√(x-1))]/dx,答案为什么不是2
人气:349 ℃ 时间:2020-03-26 08:13:26
解答
d[f(cos√(x-1))]/dx=f'(x)*(-sin√(x-1))*1/2*1/√(x-1)=-1/2*f'(x)*sin√(x-1)/√(x-1)
lim x->1+时的d[f(cos√(x-1))]/dx=lim x->1+[-1/2*f'(x)*sin√(x-1)/√(x-1)]=-1/2*2*1=-1
关键在sin√(x-1)/√(x-1)的极限=1设u=cos√(x-1),当x->1+时u=1,为什么df(u)/dx不是=f ‘(1)=1呢?df(u)/du=f ‘(1)=1是对的,
推荐
- 设f'(x)在[a,b]上连续,证明:lim(λ→+∞)∫(a,b)f(x)cos(λx)dx=0
- 设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
- 设f(x)在x=e处有连续的一阶导数,f'(e)=-2(e^-1)则lim(x→0+)(d/dx)f(e^cos√x)=
- 设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1/f(x)-f(a)]-[1/(x-a)f'(a)]}
- 设f(x)有二阶导数,在x=0的某去心邻域内f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x)
- 3÷()=15分之()=()分之24=20分之12=(小数)
- 正比例函数y=2x和一次函数y=-3x+b的图像交于点P(1,m)
- 等腰梯形的腰与上底相等且等于下底的一半,则该梯形的对角线与下底的夹角为
猜你喜欢