证明Xn+1=Xn+1/Xn是单调有界数列
人气:470 ℃ 时间:2019-09-24 05:52:08
解答
当xn>0的时候,这个数列应该是单调的,但是无界.
反证法:
设xn有界,由于xn是单调的,那么 xn的极限存在,也就是limx(n+1) = lim(xn)
也就是xn = xn + 1/xn
显然这个方程在实数范围内是无解的,所以xn的极限不存在,所以xn是无界的.
推荐
- 设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
- 设数列Xn有界,又limYn=0 证明limXnYn=0
- 若数列{xn}有界,limyn=0,证明limxnyn=0
- 设数列{Xn}有界,又limYn=0,证明:limXnYn=0
- 设数列{Xn}有界,又limYn=0,n->无穷大,证明limXnYn=0,n->无穷大
- 小明现在身高152M比去年长高CM,小明去年身高多少,用解方程
- 某公园计划修建一块面积为40000㎡的矩形草坪,且草坪的长与宽之比为k(k
- 一本书,已看页数与未看页数的比是1:4,如果再看80页,已看页数与未看页数的比是1:2,这本书有多少页?如果再看多少页,已看页数与未看页数的比是1:
猜你喜欢