> 其他 >
在三角形ABC中,内角A.B.C的对边分别为a.b.c,已知a.b.c长等比数列且a+c=3,tanB=3分之根号7 则ABC面积为
人气:275 ℃ 时间:2020-06-02 03:31:48
解答
由 tanB=√7/3 得 cosB=3/√(7+9)=3/4 ,sinB=√7/4 ,
由于 a、b、c 成等比数列,所以 b^2=ac ,
而 由 a+c=3 得 a^2+c^2+2ac=9 ,
所以,由余弦定理得 cosB=(c^2+a^2-b^2)/(2ac)=(9-2ac-ac)/(2ac)=3/4 ,
因此解得 ac=2 ,
所以,SABC=1/2*acsinB=1/2*2*√7/4=√7/4 .
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版