s=a^2-(b-c)^2=a^2-b^2+2bc-c^2
b^2+c^2-a^2=2bc-s
cosA=(b^2+c^2-a^2)/2bc;
cosA=(2bc-s)/2bc=1-s/2bc;
因为:
s=1/2bcsinA;
所以
cosA=1-1/2bcsinA/2bc
cosA=1-1/4sinA;
tanA/2=(1-cosA)/sinA=[1-(1-1/4sinA)]/sinA=1/4;
tanA/2的值为1/4
tanA=2tan(A/2)/(1-(tan(A/2)^2)= 1/2/(1-1/16)=8/15
