求极限(x-->0),(根号(1-X^2))^(1/x) 要用洛必达定理.
人气:227 ℃ 时间:2020-06-23 08:01:49
解答
【罗必塔法则】
lim(x->0) [√(1-x^2)]^(1/x)
=lim(x->0) e^{ (1/x)ln[√(1-x^2)] }
=lim(x->0) e^{ 1/2 ln(1-x^2) /x }
= e^ { 1/2*lim(x->0)[ln(1-x^2)/x] }
罗必塔法则
= e^{ 1/2*lim(x->0) [(-2x)/(1-x^2) /1 ]}
= e^0
= 1
【重要极限其实更简洁】
lim(x->0) [(1-x^2)^(1/2)]^(1/x)
=lim(x->0) [1+(-x^2)]^(1/2x)
=lim(x->0) {[1+(-x^2)]^(-1/x^2)}^(-x/2)
= e^0
= 1
推荐
猜你喜欢
- A,B两地相距150千米,两列火车都从A地前往B地,货车比客车早半个小时出发,客车却比货车早到20分钟,已知货车与客车的平均速度之比是2:3
- 请把这句话翻译成英语:下面我个大家讲一个寓言故事,故事的名字叫做乌鸦喝水
- 已知函数f(x)=-3x^2+a(6-a)x+b,当方程f(x)=0的一个根小于1,另一个根大于1,且b=3,
- I was thinking about her thinking about me where we gunna be it was only just a dream
- 有关青蛙的诗句?
- He wishes to come to China to study Chinese medicine为什么study要加to
- 六年级上册数学期末自主检测(正确答案)
- Do you like bananas?(用所给单词的适当形式填空)NO I don·t like ____(they)at all