类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积满足的关系为______.
人气:410 ℃ 时间:2019-10-23 04:23:19
解答

由边对应着面,边长对应着面积,由类比可得S
BCD2=S
ABC2+S
ACD2+S
ADB2.
推荐
- 在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是
- 三角形ABC中,BC=a,AB=c,AC=b.若三角形ABC不是直角三角形.请类比勾股定理,证明a平方,b平方和c平方的关
- 三角形ABC不是直角三角形,请类比勾股定理,猜想a的平方+b的平方与c的平方的关系.
- 在平面几何里有勾股定理:设△ABC的两边AC,BC互相垂直,则AC2+BC2=AB2.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面与底面面积的关系,可以得出的正确结论是:设三棱锥A-BCD三个侧面ABC,ACD,ADB两两相互垂直,
- 在平面几何里,有勾股定理“设三角形ABC的两边AB、AC互相垂直,则AB的平方加上AC的平方等于BC的平方”,拓
- you were silly not _____your car .
- (5x+2y-12)的平方与3x+2y-6的绝对值互为相反数,求x+y
- (-2又八分之三)化成小数是多少阿
猜你喜欢