已知lim((an平方+bn-1)/(2n-3n平方+1))=1,则a=
人气:220 ℃ 时间:2020-06-03 07:19:25
解答
lim(n→∞) (an² + bn - 1)/(2 - 3n² + 1) = 1lim(n→∞) (a + b/n - 1/n)/(2/n - 3 + 1/n²) = 1,上下都除以n²(a + 0 - 0)/(0 - 3 + 0) = 1a/(- 3) = 1a = - 3
推荐
- 已知lim(n→∞) [(an^2+bn-100)/(3n-1)]=2,求a、b的值.
- lim(n->无穷)[(3n^2+cn+1)/(an^2+bn)-4n]=5
- 等差数列an,bn的前n项和分别为Sn,若Sn/Tn=2n/(3n+1),求lim an/bn
- lim n→∞ an^2+bn+1/3n-2=-2,求a,b之值
- {an}{bn}等差,前n项和的比为Sn/Tn=(2n+1)/(3n-2),求lim an/bn
- Don't make any noise,please,My father ( )(sleep),He is very tired.
- 已知函数f(x)在R上是减函数,a,b∈R,且a+b≤0则有 ( )
- “zen们”的“zen”怎么打?(一个口一个自的那个)
猜你喜欢