> 物理 >
如图所示,劲度系数分别为k1和k2的轻质弹簧竖直地悬挂着质量分别为m1和m2的两个物体,k2悬挂在m1的下端,整个装置处于静止状态.现用一个竖直向上的力将下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两个弹簧的原长之和,这时托起m2的竖直向上的力F多大?该过程m2上升的高度h是多少?
人气:107 ℃ 时间:2019-09-17 18:03:39
解答
当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,
对m1受力分析得:m1g=k1x+k2x…①
对m2受力分析得:
F=m2g+k2x…②
①②联解得竖直向上的力F=m2g+
m1gk2
k1+k2

未托m2时,上面弹簧伸长量为x1=
(m1+m2)g
k1
…③
下面弹簧伸长量为x2=
m2g
k2
…④
托起m2时:m1上升高度为:h1=x1-x…⑤
m2相对m1上升高度为:h2=x2+x…⑥
m2上升高度为:h=h1+h2…⑦
③④⑤⑥⑦联解得h=
m2g
k2
+
(m1+m2)g
k1

答:托起m2的竖直向上的力F=m2g+
m1gk2
k1+k2

该过程m2上升的高度h是h=
m2g
k2
+
(m1+m2)g
k1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版