设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆
人气:220 ℃ 时间:2019-10-26 08:37:59
解答
证明:
Ax=b有唯一解,
那么r(A,b)=r(A)=n,
而A为n阶矩阵,所以r(A)=n可以得到A可逆
同理,
n阶矩阵A可逆,那么r(A)=n,
而增广矩阵r(A,b)显然此时等于r(A),
所以r(A,b)=r(A)=n,
方程有唯一解
故Ax=b有唯一解的充分必要条件是A可逆
推荐
- 设A是n阶实矩阵,b是任意的n维列向量,证明线性方程组A^TAx=A^Tb有解
- 已知A是n阶实对称矩阵,对任一的n维向量X,都有X’(X的转置)AX=0,证明A=0.
- 设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0
- 设A为m*n矩阵,证明:若任一个n维向量都是AX=0的解,则A=0
- 证明:因为 A,B都是n阶正定矩阵 所以 对任意非零n维列向量 x,x'Ax >0,x'Bx>0 所以 x'(2A+3B)x = 2x'Ax +
- 作文:我的梦想(是当作家)
- they who should come failed to appear.
- (物质的量浓度) C=1000*W*密度/M 是怎么回事?是怎么推导出来的?
猜你喜欢
- 函数f(x)=x-arcsinx的单调递减区间为
- 甲、乙两数的平均数是78,甲数与乙数的比是5:8,甲、乙两数各是多少?
- 关于X的方程 log以1/2为底(a—根号下x-1)=0存在实数根,则a的取值范围
- 泊的多音字、呛的多音字、稽的多音字、晃的多音字 形近字蛊、盅,形近字廖、寥,形近字戮、谬,形近字噗
- 设A,B两事件独立,P(B)=0.7,P(A)=0.3,求P(A-B).
- 分析一段话.
- What would Amy like?的回答
- 计算负2的1999次方加负2的2000次方