已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2
人气:449 ℃ 时间:2019-10-18 08:45:07
解答
证明:
f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.
又当x趋近于+∞时,f(x)正向趋近于0,且f(0)=0,所以,如果存在x1≠x2使得f(x1)=f(x2),不失一般性令x1<x2,则0<x1<1,x2>1.
对于任意的x∈(0,1),分别取两点1-x、1+x.现在比较f(1-x)和f(1+x)的大小.
f(1+x)-f(1-x)=[1+x-(1-x)e^(2x)]/e^(1+x)
令分子部分为g(x)=1+x-(1-x)e^(2x),x∈(0,1).求导有g'(x)=1+(2x-1)e^(2x),x∈(0,1).
当x=0时,g'(x)=0;当x>0时,1+(2x-1)e^(2x)单调递增且大于0.所以,在(0,1)上g(x)是单调增函数,且g(x)>g(0)=0,有f(1+x)-f(1-x)>0,即f(1+x)>f(1-x)!
因为0<1-x<1、1+x>1、f(x)在[1,+∞)上单调递减且f(1+x)>f(1-x),所以在1+x点的右侧必能找到一点x2,使得f(1-x)=f(x2),x2>1+x.
故(1-x)+x2>(1-x)+(1+x)=2
令1-x=x1,则为x1+x2>2 得证
推荐
- 已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2
- 函数f(x)=2^x,X1,X2属于R,且X1≠X2,证明:1/2(f(X1)+f(X2))>f((X1+X2)/2)
- 已知函数f(x)=3x/x2+x+1(x>0)①求其单调区间并证明②若x1≥1,x2≥1,证明|f(x1)-
- 已知函数f(x)=-√a/a^x+√a(a>0且a≠1).证明:若x1+x2=1则f(x1)+f(x2)=-1
- 已知函数f(x)=tanx,x∈(0,90°),若X1,X2∈(0,90°),且x1≠x2,证明:0.5[f(x1)+f(x2)]>f[(x1+x2)/2]
- 照样子写词各4个历史故事的词四面楚歌 寓言故事的词刻舟求剑 自然风景的词崇山峻岭
- 在光滑的水平面上钉两个钉子A和B,相距20cm,用一根长为1m的细绳,一端系一质量为0.5kg的小球,另一端固定
- 中国传统戏曲艺术受到了极大的冲击,正在一步步走向衰弱.请你为此写一段话.
猜你喜欢
- 动物庄园的好词好句,急!
- 点燃火柴和花生米,说说能量是如何转换的
- 等底等高的两个三角形一定能拼成平行四边形吗
- 两个乘数的的积是15.36,其中的一个乘数是12 另一个乘数是多少
- 平面内不过同一点的n条直线两两相交,它们的交点个数记作an,并且规定a1=0.为什么an-an-1=n-1
- 请问三相四线有功电度表当中,3*200/380V 3*1.5(6)A 50Hz 600r/kW.h
- will,her,feel,like,think,class,wear,five,eat.这几个单词:每个单词中变换其中一个字母成为另一个单词
- 当k为何值时,y=(k-1)x的 |k|+k-2为一次函数