函数f(x)=acosωx+bsinωx(ω>0)的最小正周期为π/2,当x=π╱6时,有最大值4.
(1)求a.b.ω的值
(2)若0<x<π/4,且f(x)=4/3.求f(x-π/8)的值
人气:144 ℃ 时间:2020-06-03 03:08:13
解答
1)求a.b.ω的值
T=π/2=2π/ω ,ω=4
f(x)=acosωx+bsinωx= acos4x+bsin4x=A sin(4x+arctanb/a ),x=π╱6时,有最大值4.A=4
2π/3+arctanb/a=π/2 ,arctanb/a=-π/6 ,,cos(-π/6)=a/A ,a=2√3,sin(-π/6)=b/A ,b=-2
2)若0<x<π/4,且f(x)=4/3.求f(x-π/8)的值 ,sin(4x-π/6)=3/16 ,cos(4x-π/6)=√247/16
f(x)=4sin(4x-π/6)
f(x-π/8)=4sin(4x-π/2-π/6)=-4sin[π/2-(4x-π/6)]=-4cos(4x-π/6)=-√247/4
推荐
- 请问这个函数的最大值是多少?f=c+acos(2πX)+bsin(2πX)
- 已知函数f(x)=acosx+b的最大值为1,最小值为-3,则函数g(x)=bsinx+a的最大值为 _.
- 已知函数f(x)=acos2ωx+√3asinωxcosωx+b,x∈R(a>0,ω>0)的最小正周期为π,函数f(x)的最大值是7/4,最小
- 2. 已知函数f(x)=acos^2wx+sinwx·coswx-1/2(w>0,a>0)的最大值为√2/2,其最小正周期为派.
- 已知函数f(x)=acos^2ωx+sinωx·cosωx-1/2 (w>0.a>0)的最大值为二分之根号二 ,其最小正周期为π (1)
- 一桶水连桶重38.5千克,倒去水的一半后连桶重23.5千克,原来有水多少千克?
- 2SO3+H2O===?
- 小学有余数的除法( )/( )=8.8,有没有这样的题目
猜你喜欢