>
数学
>
设函数f(x),g(x)在[a,b]上连续,且在[a,b]区间积分∫f(x)dx=∫g(x)dx,则
A.f(x)在[a,b]上恒等于g(x)
B.在[a,b]上至少有一个使f(x)≡g(x)的子区间
C.在[a,b]上至少有一点x,使f(x)=g(x)
D.在[a,b]上不一定存在x,使f(x)=g(x)
选哪个
人气:236 ℃ 时间:2020-06-07 09:28:36
解答
令F(x)=f(x)-g(x),根据条件,F(x)在[a,b]上连续且∫
F(x)dx=0,则存在x1<x2∈[a,b],使得F(x1)>0,F(x2)<0.所以存在x∈[x1,x2],使得F(x)=0.选C
推荐
设f(x)连续,则ddx∫x0tf(x2−t2)dt=( ) A.xf(x2) B.-xf(x2) C.2xf(x2) D.-2xf(x2)
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
(积分)设函数f在区间[0,1]上可微,且满足1/2f(1)=∫(1/2,0)xf(x)dx
设函数F(x)在区间【a,b】上连续,又F(x)是f(x)的一个原函数,F(a)=-1,F(b)=-3.则定积分a到bf(x)dx等于多少
设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
有一串数:1,3,8,22,60,164,448,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第2000个数除以9的余数是_.
I'm looking forward to owning an electronic dictionary so my father is going to buy___for me.
作文 春天般的记忆 急 600字
猜你喜欢
He went to the centre of Beijing by underground.同义句He__ __ __ to __ __ the centre of Beijing.
《索溪峪的野》一文先用一个字概括介绍了索溪峪()的特点.
“2050年苏州的一天”
为什么高炉煤气中混入一定量空气,遇明火可能会发生爆炸
英语翻译
欧姆定律公式以及做应用题的方法,从何入手.
()^5=-(x•x•x•x•x)•2•4•4 求括号内填什么
氢气在空气中燃烧和在氧气中燃烧的现象分别是啥
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版