已知椭圆的左右焦点分别为F1,F2,离心率为e,若椭圆上存在一点P
椭圆x*2/a*2+y*2/b*2=1的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得PF1/PF2=e,则该椭圆离心率的取值范围是?
点m是x*2/a*2+y*2/b*2=1(a>b>0)上的点,以M为圆心的圆与x轴相切于焦点F
,圆M与y轴相交于P,Q,若三角形PQM是钝角三角形,求该椭圆离心率的取值范围
人气:357 ℃ 时间:2019-09-01 08:18:16
解答
1.设PF1=x PF2=y(x<y)
由题 x+y=2a ...①
x/y=c/a ...②
y-x<2c ...③
由①②得 y=2a^2/(a+c) ...④
①③得 y<a+c ...⑤
联立④⑤得 a^2-c^2-2ac<0
同除以a^2得
1-e^2-2e<0
解得 -√2-1<e 或 e >√2-1
∵ 0<e<1
∴ √2-1<e<1
推荐
- F1,F2是椭圆的两个焦点,若椭圆上存在点P,使角F1PF2=120°,则离心率
- 设椭圆x2a2+y2b2=1(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120°,椭圆离心率e的取值范围为( ) A.32≤e<1 B.63<e<1 C.0<e≤63 D.12<e<1
- 已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为1/3.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为12559. (1)求圆P方程和椭圆方程; (2)求证:无论
- 已知椭圆的两焦点为f1,f2,如果椭圆上存在点P,满足角F1PF2=90°,求椭圆的离心率的取值范围
- 椭圆的左右焦点为F1,F2,若椭圆上存在一点a/sinPF1F2=c/sinPF2F1,则椭圆离心率的范围是?
- 某银行在某时间段内办理了以下业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元.请你计算一下:银行在这段时间内总计是存入或取出多少元.(用有理数的减法做)
- it is( )and helps me learn a lot( )things.
- "浅草才能没马蹄“ 才能咋解释?
猜你喜欢