(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.
(1) 求l的离心率
(2) 求点P(0,-1)满足PA=PB,求E的方程
人气:116 ℃ 时间:2019-08-19 14:02:07
解答
F1B|+|F2B|=2a |F1A|+|F2B|=2a
所以|AF2|+|AB|+|BF2|=|F1B|+|F2B|+|F1A|+|F2A|=4a
依题目的2|AB|=|AF2|+|BF2|
所以|AB|=4a/3
设l:y=x+c A(x1,y1) B(x2,y2)
与:(X^2/a^2)+(Y^2/b^2)=1联立得(a^2+b^2)x^2+2a^2cx+a^2(c^2-b^2)
所以x1+x2=-(2a^2c)/ (a^2+b^2) x1x2=a^2(c^2-b^2)/a^2+b^2
所以|AB|=√(1+k^2) |x1-x2|=√2 √(x1+x2)^2-4x1x2=4ab^2/(a^2+b^2)
又因为|AB|=4a/3
所以4a/3=4ab^2/(a^2+b^2)
所以4a^3+4ab^2=12ab^2即a^2=2b^2
所以e^2=(c^2)/(a^2)=(a^2-b^2)/a^2=1/2
所以e=(√2)/2
推荐
- 已知斜率为一得直线L过椭圆x2/4+Y2=1的右焦点F2 若L与椭圆相交于A,B两点,F1为椭圆左焦点求,三角形F1AB的面
- 椭圆焦点为F1(-c,0),F2(c,0),过E(a2/c,0)的直线与椭圆交与A ,B两点,F1A//F2B,且F1A=2F2B,(1)求AB的斜率
- 知f1,f2是x2/9+y2/8=1的左右两个焦点,过f2且斜率为2的直线l交椭圆于A,B两点
- F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等
- 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率
- Love is always my gift to you英文怎么说
- 有一捆电线.第一次用去全长的3分之1,第二次用去剩下的4分之1,第三次用去全长的5分之1,结果还剩13米
- 英语翻译
猜你喜欢