a,b,c为实数,且a+b+c=2乘根号3,a2+b2+c2=4,求(a-2b+c)的1997次方
人气:103 ℃ 时间:2020-04-07 17:00:49
解答
:∵a+b+c=2√3,a²+b²+c²=4
又∵(a+b+c)²=a²+b²+c²+2(ab+bc+ac)
∴(2√3)²=4+2(ab+bc+ac),即ab+bc+ac=4
∵(a-b)²+(b-c)²+(a-c)²=2[(a²+b²+c²)-(ab+bc+ac)]=2(4-4)=0
∴a=b,b=c,a=c,即a=b=c,2b=a+c
∴(a-2b+c)的1997次方=0
故答案为0.
推荐
猜你喜欢
- 一年级有三个班,一班有40人,二班有41人,三班有39人,把600块糕点按人数分给一年级小朋友.
- 0.01,0.04,0.09( ),( ),( ).找规律
- 呵呵``再来几个初三的英语问题哈·!
- 四年级数学一课双练下册17页第五题如何解答?从0到9这10个数中任选8-9个使每边数字之和相同且最小
- Shirley 这个名字的含义
- 已知抛物线y=3ax^2+2bx+c,若a=b=1,c=-1,求抛物线与坐标轴交点到坐标原点的最短距离
- 动脑筋,简便算.(递等式,不要竖式计算)(答得好,悬赏一百分) 25x32x125 37x62+37x39-37
- -5=5/6n+n(n-1)/2X(-1/6)