> 数学 >
设函数f(x)=sin(wx+2π/3)+sin(wx-2π/3)(w>0)的最小正周期为π,求函数的单调区间?
人气:322 ℃ 时间:2019-08-19 06:56:17
解答
f(x)=sin(wx+2π/3)+sin(wx-2π/3)=sinwxcos(2π/3)+coswxsin(2π/3)+sinwxcos(2π/3)-coswxsin(2π/3)=sinwxcos(2π/3)+sinwxcos(2π/3)=2sinwxcos(2π/3)=-sinwx∵T=π∴2π/w=πw=2∴函数为f(x)=-sin2x∴函数的单...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版