是否存在常数abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?
人气:357 ℃ 时间:2020-02-03 00:02:57
解答
1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=(1+2+..+n)*n^2-(1^3+2^3+..+n^3)其中:1+2+3+..+n=n*(n+1)/21^3+2^3+...+n^3=[n(n+1)/2]^2 所以:1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=(1+2+..+n)*n^2-(1^3+2^3+..+n^3)=n^3*(n+1)/2 -[n(n+1)/2]^2 =n*(n+1)(2n^2-n^2-n)/4=(n^2+n)(n^2-n)/4 =(n^4-n^2)/4 对比an^4+bn^2+c a=1/4,b=-1/4,c=0所以存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn^2+c对一切正整数n都成立.补充:1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]=(2n^2+2n+1)(2n+1)=4n^3+6n^2+4n+12^4-1^4=4*1^3+6*1^2+4*1+13^4-2^4=4*2^3+6*2^2+4*2+14^4-3^4=4*3^3+6*3^2+4*3+1.(n+1)^4-n^4=4*n^3+6*n^2+4*n+1各式相加有(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^21^3+2^3+...+n^3=[n(n+1)/2]^2
推荐
- 是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(an^2+bn+c)
- 是否存在常数a,b,c,使等式1*2^2+2*3^2+.+n(n+1)^2=((n+n^2)/12)(bn+c+an^2)对一切正整数n都成立?证明你的结论
- 是否存在常数a、b,使得等式:1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(an^2+n)/(bn+2).对所有的正整数都成立,若存在求a,b的值,并证明你的结论.
- 数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立
- 是否存在常数abc,使等式1²+2²+3²+~~n²=an³+bn²+cn对一切正数都成立
- 比一个数少9的数是48,这个数是多少
- 根据首字母完成句子 Half an hour is thirty m _____.
- 要能区别自己的拍手声和高墙反射回来的回声,人离高墙至少几米?
猜你喜欢
- They go to the park to fly kites..改为一般疑问句
- 在中国 最美的草原是什么草原
- 状语从句
- 为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建设A,B两种型号的沼气池共20个,
- 加热分解碳酸氢钠实验结束后发现石灰水又变成透明、为什么?写一下化学方程和离子方程式
- 英语选择题分析2
- 距离地面为300m高处,有一个带电荷量为q1=1C的物体,问它能吸起多重的在地面上带电荷量为q2=-1C的物体?(g取10m/s^2)
- (1).在常温常压下,10mL某气态气体A与50mL过量的氧气混合完全燃烧,冷却到原来的状况,残留的气体的体积为35mL,则A不可能是 ( )