是否存在常数a、b,使得等式:1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(an^2+n)/(bn+2).对所有的正整数都成立,若存在求a,b的值,并证明你的结论.
要用到数学归纳法
人气:266 ℃ 时间:2020-02-03 13:08:24
解答
令n=1得1/3=(a+1)/(b+2);令n=2得3/5=(4a+2)/(2b+2);解得a=1,b=4.猜想1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(n^2+n)/(4n+2)=n(n+1)/2(2n+1).用数学归纳法证明如下:(1)当n=1、n=2时等式显然成立;(...
推荐
- 是否存在常数a,b,c,使等式1*2^2+2*3^2+.+n(n+1)^2=((n+n^2)/12)(bn+c+an^2)对一切正整数n都成立?证明你的结论
- 是否存在常数a,b,c,使等式1^2+3^2+5^2+……+(2n-1)^2=1/3an(bn^2+c)对任意正整数n都成立?证明你的结论.
- 是否存在常数a、b、c,使等式1^2+3^2+5^2……+(2n-1)^2=an/3(bn^2+c),
- 是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立
- 是否存在常数a,b使等式1^2/1*3+2^2/3*+.+n^2/(2n-1)(2n+1)=an^2+n/bn+2对一切正实数都成立
- 仔,析,每个字组二个词
- 有道解方程不会做,
- 高中英语挂科怎麽办 ,高一英语考20几分,文科总分460多,我想考重点
猜你喜欢