是否存在常数a,b,c,使等式1*2^2+2*3^2+.+n(n+1)^2=((n+n^2)/12)(bn+c+an^2)对一切正整数n都成立?证明你的结论
人气:480 ℃ 时间:2020-03-20 04:30:15
解答
证明:
假设存在a,b,c使得等式成立,则可以令n=1,2,3,此时得方程组:
①a+b+c=24;②4a+2b+c=44;③9a+3b+c=70
联立①②③,解得:a=3;b=11;c=10
即1*2^2+2*3^2+3*4^2+……+n*(n+1)^2=[n(n+1)/12](an^2+bn+c)
下面用数学归纳法进行证明:
1.当n=1时,成立(通过前面的计算是成立的)
2.假设当n=k时,等式成立,
即Sk=1*2^2+2*3^2+3*4^2+……+k*(k+1)^2=[k(k+1)/12](3k^2+11k+10)
则当n=k+1时,
Sk+1
=Sk+(k+1)(k+2)
=[k(k+1)/12](3k^2+11k+10)+(k+1)(k+2)
=[(k+1)(k+2)/12][3(k+1)^2+11(k+1)+10]
即当n=k+1时,等式也成立
因此,当a=3,b=11,c=10 时,等式对一切自然数都成立.
祝你学习天天向上,加油!
推荐
- 是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(an^2+bn+c)
- 是否存在常数a,b,c,使等式1^2+3^2+5^2+……+(2n-1)^2=1/3an(bn^2+c)对任意正整数n都成立?证明你的结论.
- 是否存在常数abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?
- 是否存在常数a,b,c,使得等式1.2平方+2.3平方+3.4平方+…+n(n+1)平方=n(n+1)/12(an平方+bn+c)
- 是否存在常数a、b,使得等式:1^2/1*3+2^2/3*5+...+n^2/(2n-1)(2n+1)=(an^2+n)/(bn+2).对所有的正整数都成立,若存在求a,b的值,并证明你的结论.
- f(X)=loga(1+x/1-X) (a大于0且a不等于1)
- 如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有_.(只填序号)
- (-5)+(-2)-(-7)
猜你喜欢