又f′(x)=2x−3+
| 1 |
| x |
| 2x2−3x+1 |
| x |
| (2x−1)(x−1) |
| x |
当x>1或0<x<
| 1 |
| 2 |
| 1 |
| 2 |
所以函数f(x)的极大值=f(
| 1 |
| 2 |
| 5 |
| 4 |
函数f(x)的极小值=f(1)=-2.
(2)函数f(x)=ax2-(a+2)x+lnx的定义域为(0,+∞),
当a>0时,f′(x)=2ax−(a+2)+
| 1 |
| x |
| 2ax2−(a+2)x+1 |
| x |
| (2x−1)(ax−1) |
| x |
令f'(x)=0,则x=
| 1 |
| 2 |
| 1 |
| a |
①当0<
| 1 |
| a |
所以f(x)在[1,e]上的最小值是f(1)=-2;
②当1<
| 1 |
| a |
| 1 |
| a |
③当
| 1 |
| a |
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意.
故a的取值范围为[1,+∞).
