∴x1+x2=-2,x1•x2=-2007.
(1)x12+x22=(x1+x2)2-2x1•x2=(-2)2-2×(-2007)=4018;
(2)
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1•x2 |
| −2 |
| −2007 |
| 2 |
| 2007 |
(3)(x1-5)(x2-5)=x1•x2-5(x1+x2)+25=-2007-5×(-2)+25=-1972;
(4)|x1-x2|=
| (x1−x2)2 |
| (x1+x2)2−4x1•x2 |
| (−2)2−4×(−2007) |
| 502 |
| 1 |
| x1 |
| 1 |
| x2 |
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1•x2 |
| −2 |
| −2007 |
| 2 |
| 2007 |
| (x1−x2)2 |
| (x1+x2)2−4x1•x2 |
| (−2)2−4×(−2007) |
| 502 |