四棱锥P-ABCD的底面为矩形,PA垂直于平面ABCD,PB=根号5,PC=根号17,PD=根号13,求P到BD距离
人气:352 ℃ 时间:2019-08-21 04:15:20
解答
PB^2=PA^2+AB^2=5
PD^2=PA^2+AD^2=13
PC^2=PA^2+AC^2=PA^2+AB^2+AD^2=17
得:PB^2+PD^2-PC^2=PA^2=1,PA=1
AB=2,AD=2√3,AC=4
作AE垂直BD于E,则AE=AB*AD/BD=AB*AD/AC=√3
P到BD距离PE=√(PA^2+AE^)=√(1+3)=2
推荐
- P是正方形ABCD外一点,P在平行边AB、CD之间,PA=根号17,PB=根号2,PC=根号5,求PD的长
- PA垂直四边形ABCD,PB,PC.PD的长度分别为根号5,根号17,根号13,P点到BD距离怎么求
- 在正方形ABCD内有一点P,且PA=2根号2,PB=1,PD=根号17,则角APB的度数等
- 在四棱锥P-ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a. (Ⅰ)求证:PD⊥平面ABCD; (Ⅱ)求异面直线PB与AC所成的角; (Ⅲ)求二面角A-PB-D的大小.
- 如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=根号2a,点E是PD的中点
- 一道英语感叹句的题
- 巧算:123×1+246×2+369×5(必须要巧算)
- 哪个天体系统是目前人类观测到的宇宙范围
猜你喜欢