请网友高手解释下[∫(0,x)tf(t)dt]'=xf(x)-∫(0,x)f(t)dt积分求导的推导过程,
人气:364 ℃ 时间:2019-08-20 14:12:02
解答
∵[∫(0,x) f(t)]' = f(x)
[∫(0,x) xf(t) dt]' = [x∫(0,x) f(t) dt]'
= x * [∫(0,x) f(t) dt]' + (x)' * ∫(0,x) f(t) dt
= x * f(x) + 1 * ∫(0,x) f(t) dt
= xf(x) + ∫(0,x) f(t) dtt作为一个变量能直接提到积分外面哇?不能,因为是对t求积分对呀,所以你那个[∫(0,x) xf(t) dt]' = [x∫(0,x) f(t) dt]'就与[∫(0,x)tf(t)dt]'不一样哟。这当然不一样,対于这个积分来说,x是常数,所以可以提取出来吧你这个方法有些问题,x看着常数的话,后面就不应该对其求导。我查了有些说[∫(0,x)tf(t)dt]'=xf(x),但书上的解题方法就是用[∫(0,x)tf(t)dt]'=xf(x)-∫(0,x)f(t)dt来算的。从公式求吧:d/dx ∫(a→b) f(t) dt = d(b)/dx * f(b) - d(a)/dx * f(a) [∫(0,x)] tf(t)]'= d(x)/dx xf(x) - d(0)/dx 0f(0)= xf(x)显然书上方法不对
推荐
- 求高手解释下[∫(0,x)tf(t)dt]'的求导过程,结果到底应该是xf(x),还是xf(x)-∫(0,x)f(t)dt.
- 积分tf(x-t)dt求导
- 全题为:∫tf(t)dt=xf(x)+x^2,(积分上限为x,下限为t),求f(x).这个变上限求导后是什么啊
- 变限积分求导问题 ∫tf(x^2-t^2)dt 上限x,下限0.设x^2-t^2=u,怎么得到-1/2∫f(u)du 上限0下限x^2,积分
- 对方程f(x)=∫(0到x)tf(t)dt+(1/2)x²两边求导得多少?
- 如图,把一张等边三角形ABC的纸片沿DE折叠,使点A落在BC边上点F处,若D、E分别在边AB、BC
- 在直角坐标系中,△ABC的顶点A、B的坐标分别为(-1,-2),(3,-2),顶点C在直线y=x+2上移动
- 氧化铜能与氢氧化钠反应吗?
猜你喜欢
- 班级明天举办辩论会求帮助
- 假如给我三天光明读后感,要短,就56十个字就行,就像二三年级写的,要有人物精神
- 每过一分钟,时钟的分针转过的角度是多少,
- 一批货物,按4:5分给甲、乙两个车队来运,乙队共运95吨,甲队共运多少吨?
- 中和热指什么呢?
- do it yourself 翻译
- 张明从学校图书馆借到了2007年1-12期 读者 合订本一册,准备在一个月内归还,请写一个借条.急要
- 以五边形每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积