> 数学 >
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.

(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=
1
2
S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
人气:170 ℃ 时间:2019-08-16 17:01:26
解答
(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=12S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版