若命题“对于任意实数x,都有x^2+ax-4a>0且x^2-2ax+1>0”是假命题,则实数a的取值范围
人气:247 ℃ 时间:2019-11-13 08:29:40
解答
因为“x^2+ax-4a>0且x^2-2ax+1>0“是假命题
也就是说这两个条件同时成立时,命题为假
先算出假命题时a的范围
x^2+ax-4a>0,令y=x^2+ax-4a,由函数图象知其开口朝上,
为满足大于0 ,那么只需在对称轴上点(即为最低点)>0即可.
对称轴为先x=-a/2,带入y,
得y=-a^2/4-4×a,若要y>0,则a
推荐
- 若命题“对于任意实数x,都有x^2+ax-4a>0且x^2-2ax+1>0”是假命题,则实数a的取值范围
- 已知任意x∈(0,+∞),都有ax^2+2ax≥x-4a,则实数a的取值范围是?
- 函数f(x)=ax²-2ax+1,(x≤-1) f(x)=(a-1)x +4a,(x>-1)在(-∞,+∞)内是减函数,则实数a的取值范围
- 若命题“ax^2-2ax+3>O恒成立”是假命题,则实数a的取值范围
- 已知点(-a,3)在圆x^2+y^2+2ax+4y+a^2-4a+7=0外,则实数a的取值范围
- 作文 传统于现代
- 在一个停车场里停车一次至少要交费2元.如果停车超过1小时.每多停0.5小时要多交1.5元.这辆汽车在离开停车场
- 在等差数列-5,-7/2,-2,-1/2,...的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项
猜你喜欢