> 数学 >
微分中值定理
证明 f(x)在[0,π/2]上可导,则(0,π/2)内至少存在一点ε,使f'(ε)sin2ε+2f(ε)cos2ε=0
人气:201 ℃ 时间:2020-06-03 18:48:47
解答
证明:
令g(x)=f(x)sin2x
则g(x)在[0,π/2]上可导
∵g(0)=g(π/2)=0
∴由微分中值定理知,在则(0,π/2)内至少存在一点ε,使
g'(ε)=[g(π/2)-g(0)]/[(π/2)-0]=0
即f'(ε)sin2ε+2f(ε)cos2ε=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版