>
数学
>
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.
人气:303 ℃ 时间:2020-03-27 23:03:49
解答
(1)证明:连接OF∵FH是⊙O的切线∴OF⊥FH(1分)∵FH∥BC,∴OF垂直平分BC(2分)∴BF=FC,∴∠1=∠2,∴AF平分∠BAC(3分)(2)证明:由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2(4分)∴∠1+∠4=∠2+∠3...
推荐
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD.
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长.
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=5,DE=4,求AD的长.
如图圆o是三角形ABC的外接圆,AF平分角BAC,FH是圆O的切线切点位F若圆O的半径长为5,AF=8求教AFH的正弦值
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长.
青海玉树地震是__板块与__板块的相互挤压造成的. ①亚欧板块 ②印度洋板块 ③非洲板块 ④太平洋板块
1.把一条铁链自由下垂地悬挂在天花板上,放开后让铁链做自由落体运动,已知整条铁链通过悬点下3.2m处的A点历时0.5s.求铁链的长度.
两种气态烃以物质的量1:1比例混合,在105°c时1L该混合烃与9L氧气混合,充分燃烧后恢复到原状态所得气体体积仍然是10L,下列各组混合烃中不符合此条件的是()
猜你喜欢
卫生间排污管与透气管图纸是110*110斜三通连接,为了减少距离是否可用110*50斜三通连接.
做作业有何用?
用循环小数表示60÷55的商是( ),保留两位小数是( )
I'm so scared
英尺,英寸和米到底该怎么换算呢
一次函数的图像经过点(1,5)且平行于直线y=-2x-2分之1,则此函数的解析式是
My family英语作文
因此,算法中基本操作语句的频度是问题规模n的某个函数f(n),记作:T(n)=O(f(n)).其中“O”表示随问题规
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版