如图,△ABC中,∠C=90°,D是AB 中点,DE⊥DF,E 、F分别在CA、CB上.求证AE²+BF²=EF²
人气:309 ℃ 时间:2019-08-18 07:22:32
解答
延长ED至G,使DG=DE,连接GF,GB
因为 DG=DE,DE垂直DF
所以 GF=EF
因为 BD=DA,DG=DE,角BDG=角ADE
所以 三角形BDG全等于三角形ADE
所以 BG=AE,角GBD=角A
因为 角C=90度
所以 角ABC+角A=90度
因为 角GBD=角A
所以 角ABC+角GBD=90度,即角GBF=90度
所以 GF^2=BG^2+BF^2
因为 GF=EF,BG=AE
所以 EF^2=AE^2+BF^2
推荐
- 三角形 ABC 角c=90 D为AB中点 DE垂直DF E F分别为CA CB上点 求证AE平方 加 BF平方等于 EF的平方
- 在△ABC中,CA=CB,∠C=90°,D是AB上的任意一点,AE⊥CD,BF⊥CD,求证:EF=│AE-BF│
- 已知,在△ABC中,CA=CB,∠C=90°,D为AB上任意一点,AE⊥CD,垂足为E,BF⊥CD,垂足为F,求证:EF=|AE-BF|.
- 已知,在三角形ABC中,CA=CB,角C=90度,D为AB上一点,AE垂直CD,BF垂直CD,求证:EF=AE-BF
- 已知三角形ABC,角C为直角,且CA=CB,D是CB的中点,E是AB上的一点,且AE=2BE,求证:AD垂直于2EB
- 有15枚硬币共七枚,求其中一角、五角、一元三种硬币各多少枚?
- 设-1小于或等于x小于或等于2,则(x减2的绝对值)减(2分之1x的绝对值)加(x加2的绝对值)的最大值与最小值之差为多少
- 数学题经过直线:2x+y-3=0和直线:3x-2y-1=0的交点,且与原点的距离为根号2的直线方程
猜你喜欢