> 数学 >
(lgx+lgy)/lgx+(lgx+lgy)/lgy+{【lg(x-y)】^2}/lgxlgy=0,求x,y及log以2为底xy的对数的值
人气:129 ℃ 时间:2020-03-13 15:15:53
解答
lgxy/lgx+lgxy/lgy +{[lg(x-y)]^2}/lgxlgy=0
lgxy(lgx+lgy)/lgxlgy +{[lg(x-y)]^2}/lgxlgy=0
{(lgxy)^2+[lg(x-y)]^2}/lgxlgy=0
所以(lgxy)^2+[lg(x-y)]^2=0
(lgxy) 和 lg(x-y)=0
xy=1 x-y=1
log2(xy)=log2(1)=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版