平面上三个力F1F2F3作用于一点且平衡,F1的模=1N,F2的模=(根号下6+根号下2)/2,F1F2夹角45°,求F3大小
人气:232 ℃ 时间:2019-08-18 19:48:44
解答
平面内三力平衡,则通过平移能够组成三角形
根据余弦定理:
|F3| = √{F1^2+F2^2-2F1F2cos45°}
= √{1^2+[(√6+√2)/2]^2-2*1*(√6+√2)/2*√2/2}
= √{1 + 2+√3 - (√3+1)}
= √2
F3大小为 √2 N为何是根号下2? 不对吧!平面内三力平衡,则通过平移能够组成三角形根据余弦定理:|F3| = √{F1^2+F2^2-2F1F2cos135°}= √{1^2+[(√6+√2)/2]^2+2*1*(√6+√2)/2*√2/2}= √{1 + 2+√3 + (√3+1)}= √(4+2√3)= √3+1F3大小为√3+1
推荐
- 平面上三个力F1,F2,F3作用于一点处于平衡状态,|F1|=1N,|F2|=(根号6+根号2)/2N,F1与F2的夹角为45°,求F3与F1夹角的大小.【用余弦定理和正弦定理,我先解出|F3|²=4+2根号3,怎么开方,如果不开
- 平面上三个力F1,F2,F3作用于一点处于平衡状态,|F1|=1N,|F2|=(根号6+根号2)/2N,F1与F2的夹角为45°,试求|F3|以及F3与F1夹角的大小.
- 平面上的三个力F1F2F3作用于一点处于平衡状态,|F1|=1N,|F2|=(√6+√2)/2N,F1与F2的夹角为45°,求F3的大小
- 双曲线的实半轴 虚半轴之长的乘积为根号3 ,F1 F2 为左右焦点,直线l过点F2,且与直线F1F2夹角为θ,tanθ=根号21/2,直线l与F1F2的垂直平分线交与点P,线段PF2与双曲线交于Q 且|PQ|:|QF2|=2:1 求双曲线方
- 中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲线的方程.
- Jack enjoyed h__ at the party last night
- 当2(a-1)7x+1的解集
- {2X+3Y=15.5 {5X+6Y=35二元一次方程,怎么解 布骤
猜你喜欢
- 弯弯的月儿小小的船,小小的船儿两头尖,我在小小的船里坐,只看见闪闪的星星蓝蓝的天.
- 描写春天的拟人句
- 369-342÷9的简便计算
- 1,-1/2,1/3,-1/4,1/5,-1/6.等等,按此规律,第2008个数是多少?如果一直排下去会合什么数接近?
- 小六数学题一道
- Paul has a pet parrot named Smarty.的另外两句同义句是什么?
- 文字求真的意思
- 英语翻译