四棱锥P-abcd中,底面ABCD是边长为8的菱形,角BAD=60°,若PA=PD=5,平面PAD垂直于平面ABCD
(1)求其体积(2)求证AD垂直PB(3)若E为BC中点,能否在棱PC上找一点F,使平面DEF垂直于面ABCD,证明你的结论
人气:298 ℃ 时间:2019-12-07 09:12:03
解答
1.连接BD,并过P作PG⊥AD于G,连接GB
∵PD=PA,∴在等腰△PAD中,PG为底边AD的高,∴PG也是AD的中线,由AD=8,可得AG=AD/2=4,在Rt△PAG中,由勾股定理,以及已知的PA=5,AG=4,可求出PG=3
由于ABCD是菱形,有AD=AB,且∵∠BAD=60°,∴△BAD为等边三角形,而G为AD边中点,故BG⊥AD
于是,BG为菱形ABCD中,边AD上的高
而等边三角形ABD中,边长为8,容易求出其高BG=4√3
于是有:S菱形ABCD=AD*BG=32√3
而面PAD⊥面ABCD,AD为两面交线,且面PAD上的直线PG⊥AD于G,∴PG⊥面ABCD,PG为四棱锥P-ABCD中,底面ABCD上的高
所以,V四棱锥P-ABCD=(S菱形ABCD)*PG /3 =32√3
2.前方已经得出:PG⊥AD,BG⊥AD,PG与BG为面PBG中的相交直线,故AD⊥面PBG,而PB∈面PBG,∴有AD⊥PB
3.可找到这样的F点满足题意,而这个F点恰为PC中点,以下证明:
∵PG⊥面ABCD,PG∈面PBG,∴面PBG⊥面ABCD
而题目要求面DEF⊥面ABCD,故需要面DEF‖面PBG
要想使两面平行,需找出两对儿分别属于两面的相交直线,使它们平行即可
很容易证明△CDB为等边三角形,而E为BC中点,∴DE⊥CB
而AD‖CB,∴DE⊥AD
前方已证BG⊥AD
∴有DE‖BG
这样,已经找到了DE,BG这两条分属于面DEF与PBG上的平行线
而另外一对儿平行线,要求它们要分别与DE,BG相交,且也要平行
面PBG中选取PB的话,无疑,由于F在PC上,一定要使EF‖PB即可
而EF‖PB的话,根据比例线段的性质,可得出F为PC中点的结论
推荐
- 四棱锥P-ABCD的底面是边长为a的菱形,平面PCD⊥平面ABCD,PC=a,PD=√2a,E为PA的中点,求证:平面EDB⊥平面ABCD
- 在四棱锥P-ABCD中,底面ABCD是边长2的菱形,侧面PAD⊥底面ABCD,角BCD=60°,PA=PD=根号2,E是BC的中点
- 如图所示,四棱锥P-ABCD中,底面ABCD为边长为2的菱形∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,则它的正视图的面积为 _ .
- 已知四棱锥P-ABCD,底面是ABCD是角A为60°.边长为a的菱形,有PD垂直于底ABCD且PA=PD 点M,N为AD,PC的中点
- 如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点. (1)求证:PA∥平面EBD; (2)求证:△PBC是直角三角形.
- 已知关于x的方程3m-x=2分之x+3的解是4,则m的平方-m=( ) 11
- 已知a大于0,则a+1/(a-1)的最小值
- 英语翻译
猜你喜欢
- All the people coming by complained.
- 例子:比喻不劳而获的人——寄生虫,粗心大意的人,目不识丁的人和思想陈旧的人
- 利于苹果生长的优势条件.
- 求顶点在原点,对称轴为X,且过点P(-2,2根号2)的抛物线的标准方程?
- 安徒生简介(英文)
- 这是一把数控外切槽刀,编号:ZQ2020R-04,
- 已知△ABC,AB=AC,E在AC上,∠ABE=20度,∠EBC=10度,D在BC上,∠DAB=80度.连接DE,求∠ADE的度数.
- 1.Usually there are four w____ in a m_____.