如图,在三角形ABC中,矩形DEFG的一边DE在BC上,点G、F分别在AB、AC上,AH是BC边上的高,AH与GF相交于K,GF=18,EF=10,BC=48.求AH的长.2、改变三角形ABC的形状则矩形DEFG的边DE在BC所在的直线上移动,点F、G仍在AB、AC上,若D、E两点至少有一点移出BC边,问这时三角形ABC的BC边上的高AH的长会不会变?证明你的结论,并画出所有不同情况的示意图.第一问已经解决,第二问不会,明天就要交、、
人气:147 ℃ 时间:2020-04-03 22:35:18
解答
在三角形AHC和三角形FEC中,三个角相等(角C是公共角,角CAH=角CFE(同位角),角AHC=角FEC=90度),根据相似三角形对应边成比例,FE:AH=CE:HC ,即 10:AH=15:24 解得 :AH=16
推荐
- 已知:如图,矩形DEFG的一边DE在△ABC的边BC上,顶点G、F分别在边AB、AC上,AH是边BC上的高,AH与GF相交于点K,已知BC=12,AH=6,EF:GF=1:2,求矩形DEFG的周长.
- 如图,在△ABC中,矩形DEFG的一边DE在BC上,点G、F分别在AB、AC上,AH是BC边上的高,AH与GF相交于K,已知S△AGF﹕S△ABC=9﹕64,EF=10,求AH的长.
- 如图,在△ABC中,矩形DEFG,G、F在BC上,D、E分别在AB、AC上,AH⊥BC交DE于M,DG:DE=1:2,BC=12 cm,AM=8 cm,求矩形的各边长.
- 已知:如图,矩形DEFG的一边DE在△ABC的边BC上,顶点G、F分别在边AB、AC上,AH是边BC上的高,AH与GF相交于点K,已知BC=12,AH=6,EF:GF=1:2,求矩形DEFG的周长.
- 如图,在三角形ABC中,矩形DEFG,G,F在BC上,D,E分别在AB,AC上,AH垂直BC交DE于M,若DG:DE=2:3,BC=15cm,AH=10
- 一个梯形的面积是36平方厘米她的上帝是三厘米高八厘米它的下底是多少厘米
- 碱金属单质都能和氧气反应生成过氧化物吗
- 求300字优秀作文+心得/读后感.
猜你喜欢