求导数:y=(lnx)^x怎样解
人气:156 ℃ 时间:2019-08-20 04:57:39
解答
y=(lnx)^x=e^ln[(lnx)^x]=e^[xln(lnx)]则y'=e^[xln(lnx)]*[xln(lnx)]'=[(lnx)^x]*[ln(lnx)+(x/lnx)*(1/x)]=[(lnx)^x]*[ln(lnx)+(1/lnx)]=[(lnx)^x]*[ln(lnx)]+(lnx)^(x-1)
推荐
猜你喜欢
- 关于一篇英语小作文
- 一辆汽车在平直的公路上向东快速行驶,一个人在该公路的便道上向东散步,如果以汽车作为参照物,则人
- 水何澹澹,——树木从生,——.——洪波涌起.
- 已知tana=2,求2/3sin^2a+1/4cos^2a
- 关于英语组句结构.
- 李清照为什么如此怀念项羽
- 求一道数学题解析:2,4,7,11,16,22.求第N个数
- 若关于x的不等式(a平方-1)x平方+(a+1)x+1大于0恒成立.求a取值范围