> 数学 >
已知两个三角形的两组边对应相等.且他们的角平分想也相等.求证两三角形全等
人气:497 ℃ 时间:2020-06-15 02:59:49
解答
设三角形ABC三边为a、b、c,三角A、B、C的角平分线为Ta、Tb、Tc,半周长为s;三角形A1B1C1三边为a1、b1、c1,三角A1、B1、C1的角平分线为Ta1、Tb1、Tc1,半周长为s1,如果a=a1,b=b1,Tc=Tc1,则△ABC≌△A1B1C1
证明:由内角平分线公式可知
Tc={2√[abs(s-c)]}/(a+b)
Tc1={2√[a1b1s1(s1-c1)]}/(a1+b1)
Tc=Tc1,即
{2√[abs(s-c)]}/(a+b)={2√[a1b1s1(s1-c1)]}/(a1+b1)
又a=a1,b=b1
所以s(s-c)=s1(s1-c1),即
(a+b+c)(a+b-c)/4=(a1+b1+c1)(a1+b1-c1)/4
(a+b)^2-c^2=(a1+b1)^2-c1^2
c^2=c1^2
c=c1
所以△ABC≌△A1B1C1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版