∴f(x+2)=
1 |
f(x) |
将x代换为x+2,则有f(x+4)=
1 |
f(x+2) |
∴f(x)为周期函数,周期为4,
∴f(2013)=f(503×4+1)=f(1),
∵f(x+2)=
1 |
f(x) |
令x=-1,则f(1)=
1 |
f(−1) |
∵当x∈[-2,0)时,f(x)=log2(-x+3),
∴f(-1)=log2(1+3)=log24=2,
∴f(1)=
1 |
f(−1) |
1 |
2 |
∴f(1)=
1 |
2 |
故答案为:
1 |
2 |
1 |
f(x) |
1 |
f(x+2) |
1 |
f(x) |
1 |
f(−1) |
1 |
f(−1) |
1 |
2 |
1 |
2 |
1 |
2 |