向量OA=(1,2,3),OB=(2,1,2)OP=(1,1,2)点Q在直线OP上运动,则当QA*QB取得最小值时,点Q的坐标是
人气:494 ℃ 时间:2020-01-29 10:23:36
解答
点Q在直线OP上运动,所以假设OQ=k(1,1,2)=(k,k,2k)QA=OA-OQ=(1-k,2-k,3-2k)QB=OB-OQ=(2-k,1-k,2-2k)QA*QB=(1-k)(2-k)+(2-k)(1-k)+(3-2k)(2-2k)=6k^2-16k+10=6(k-4/3)^2-2/3最小值在k=4/3时取得,此...
推荐
- 已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么XA•XB的最小值是 _.
- 平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点Q为直线OP上的动点.求:(1)当OAOB取最小值时,求OQ的坐标
- 已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线AP上的一点(O为坐标原点),那么XA*XB的最小值是多少?
- 已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么XA•XB的最小值是 _.
- 已知向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,求当向量QA*QB取最小值时,OQ的坐标
- digital multimeter是什么意思
- 宝贝的反义词
- 观察角… ,-690° ,-330° ,30° ,390° ,… ,发现这些角的_____ 相同
猜你喜欢