高一数学:设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1. 问题在下面
1.求f(1)的值
2.如果f(x)+f(2-x)<2,求x的取值范围
人气:180 ℃ 时间:2019-12-14 11:39:47
解答
1.
f(xy)=f(x)+f(y),
令x=y=1,f(1)=f(1)+f(1),得f(1)=0
2.f(1/3*1/3)=f(1/9)=f(1/3)+f(1/3)=2
f(x)+f(2-x)<2
故f[x(2-x)]1/9
x^2-2x+1/9
推荐
- 设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1
- 高一数学定义在区间(-1,1)上的函数满足对任意的x,y属于(-1,1),都有f(x)+f(y)=f[(x+y/(1+xy)]
- 设f(x)是定义在R+上的增函数,并且对任意的x>0,y>0,f(xy)=f(x)+f(y)总成立
- 定义在(-1、1)上的函数f(x)满足:1、对任意x,y∈(-1,1),都有f(x)+f(y)=f(x+y/1+xy).
- 设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1
- 关于whether和whether or not?
- 你说的白是什么白?你说的黑是什么黑?
- they had to wait until somebody told them___later
猜你喜欢