∴x2-2x+1+y2-4y+4=0,
∴(x-1)2+(y-2)2=0,
∴x=1,y=2,
∴原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2011×2012 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
| 2011 |
| 2012 |
故答案是
| 2011 |
| 2012 |
| 1 |
| xy |
| 1 |
| (x+1)(y+1) |
| 1 |
| (x+2)(y+2) |
| 1 |
| (x+2010)(y+2010) |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2011×2012 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
| 2011 |
| 2012 |
| 2011 |
| 2012 |