在三角形ABC中,若a=(√3-1),且cotB/cotC=c/(2a-c),求A B C三个角的大小
人气:312 ℃ 时间:2019-08-20 11:34:11
解答
你的题目有点问题!
在三角形ABC中,设a/c=(√3-1),cotC/cotB=(2a-c)/c,求A,B,C
tanB/tanC=cotC/cotB=(2a-c)/c=(2sinA-sinC)/sinC(正弦定理)
去分母得tanBcosC=2sinA-sinC
整理得sinBcosC=2sinAcosB-sinCcosB
即sinBcosC+sinCcosB=2sinAcosB
sin(B+C)=2sinAcosB
sinA=2sinAcosB
sinA(cosB-1/2)=0
在三角形中,正弦为正,故
cosB=1/2,解得B=π/3
则C=2π/3-A
a/c=sinA/sinC=sinA/sin(2π/3-A)=√3-1(正弦定理)
即sin(2π/3-A)/sinA=(√3+1)/2
展开,整理得√3/2+cotA/2=(√3+1)/2
即cotA=1,解得A=π/4
则C=5π/12
我之所以先求A,就是因为5π/12并非必须掌握的特殊角.
推荐
- 在三角形⊿ABC中,a/c=√3-1,cotC/cotB=2a-c/c,求A、B、C
- 在三角形ABC中,a/c=(根号3)-1,cotC/cotB=(2a-c)/c,求角A,B,C
- 三角形abc中,abc分别为角a角b角c的对边,a/c=更号3-1.COTC/COTB=2a-c/c,求角A.B.C
- 三角形ABC中,A=60°,c=3b 求a/c的值和cotB+cotC的值
- RT,设三角形ABC的内角A,B,C的对边分别为a,b,c,且A=60度,c=3b,求cotB+cotC的值
- The news ( )exciting
- D、E、F分别是三角形ABD各边的中点,AH是三角形ABC的高,四边形DHAF是等腰梯形嘛
- that's Okay?me 填什么 A forB toC out of
猜你喜欢
- 如图所示,物体处于平衡状态,若保持a不变,当力F与水平方向夹角β多大时F有最小值( ) A.β=0 B.β=π2 C.β=α D.β=2α
- 人体呼出的氮气和吸入氮气含量有没有发生变化
- 一台座钟,它的分针长5厘米.这台座钟的分针的针端一天所走的路程是多少米?
- 滑轮组可以省力,改变用力方向,不能同时省力又省距离
- 若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则l2直线恒过点(0,2).(0,2)点怎么算的?
- 英语翻译
- 那个男孩比班上任何一个学生都高.That boy is ( )( )( )( )in the class.
- 如图:四边形ABCD为菱形,对角线AC=8,BD=6,对角线相交于点O,P是边AD上一点(P与D点可重合)