若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.
人气:480 ℃ 时间:2019-08-17 18:41:07
解答
证明:因为f(x)为偶函数
所以f(x)=f(-x) 此式两边对x求导
有f'(x)=-f'(x) 又因为f'(0)存在
代入有 f'(0)=-f'(0)
故f'(0)=0
证毕
推荐
- 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0
- 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0
- 如果f(x)为偶函数,且f'(0)存在,证明f'(0)=0
- 如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0
- 如果f(x)为偶函数,且f'(x)存在.证明:f'(x)=0.
- 沁园春雪中望字领起的诗句是
- 97分之26怎样约分,四十八分之五十一怎样约分
- 【二元一次方程应用题】某工厂2008年捐款1万元给希望工程,以后每年都捐款,计划到2010年共捐款4.75万元
猜你喜欢