如果f(x)为偶函数,且f'(x)存在.证明:f'(x)=0.
人气:329 ℃ 时间:2019-07-25 01:32:36
解答
题目有误,应该是证明f'(0)=0
=======
证明:
因为f(x)是偶函数,所以一定满足关系
f(-x)=f(x)
若f'(x)存在,对上面的等式两边求导得
[f(-x)]'=f'(x)
-f'(-x)=f'(x)
令x=0时,-f'(0)=f'(0)
所以f(0)=0
推荐
- 如果f(x)为偶函数,且f'(0)存在,证明f'(0)=0
- 如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0
- 设f(x)是偶函数,且f‘(0)存在,证明f'(0)=0
- 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0
- 若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.
- 脱离唯物主义的辩证法是什么样的?
- 一种商品的原价是200元,如果先提价20%,再降价20%,那么这种商品最后的价钱与原价相比( )A.贵4元
- 同义词比较
猜你喜欢