已知抛物线C:y^2=4x的准线与x轴交于M点过M点斜率为k的直线l与抛物线C相交于AB两点
1 F为抛物线C的焦点 若模AM=5/4模AF 求K的值
2 是否存在这样一个K,使得抛物线C上总存在Q,且QA垂直QB若存在请求出K的取值范围
人气:152 ℃ 时间:2019-11-06 13:05:33
解答
(1)作AH垂直x轴 三角形AMH中
|MH|=A到准线的距离=|AF|
|MH|/|AM|=4/5 得k=tanAMH=3/4
(2)记A(x1,y1)B(x2,y2)Q(a²,2a)
y=k(x+1)与抛物线方程联立得
x1+x2=(4-2k²)/k²
x1x2=1
y1+y2=4/k
y1y2=4
向量QA=(x1-a²,y1-2a)
向量QB=(x2-a²,y2-2a)
由QA*QB=0
(a²+5)(a²+1)k²-8ak-4a²=0
得k=-2a/(a²+5)或2a/(a²+1)
-2a/(a²+5)≥-√5/5
2a/(a²+1)≤1
得-√5/5≤k≤1且k≠0
推荐
- 已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B
- 已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若|AB|=5 求L的方程
- 已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=MB向量,则k=?
- 已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若AB=5 求L的方程
- 斜率是1的直线经过抛物线y2=4x的焦点,与抛物线相交于A、B两点,则线段AB的长是( ) A.2 B.4 C.42 D.8
- 矩形ABCD的两条对角线相交于点M(1,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
- 写出有关黄河的成语和古诗词句.(各写2个)
- What do you like doing?写出它的扩展句
猜你喜欢