> 数学 >
已知对所有的实数x,|x+1|+√(x-1)≥m-|x-2|恒成立,则m可取的最大值为______
人气:226 ℃ 时间:2020-03-21 23:26:51
解答
m最大值为3
∵此题的突破口在√(x-1).
∴要满足x-1≥0
∴x≥1
即x最小值为1
而x+1,x-2都是随着x的增大而增大,x最小值为1
∴x+1最小值为2.绝对值为2 ,x-2的绝对值最小为1
所以m≤3题目是问m的最大值,为什么要让移项后左边的式子取最小值呢?左边的式子值越大,m的值不也越大吗?把右边的丨x-2丨移到左边这样,左边的式子≥m,意思是左边的式子的最小值要大于或等于m我在解答中说的“x+1,x-2都是随着x的增大而增大”,是为了说明x+1和x-2是一次函数,x的增大会导致他们的值增大,所以当x取最小值时,x+1和x-2的值就最小了而左边式子的最小值为3,这个最小值要大于或等于m,所以m最大只能取3,。所以m最大值为3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版